Assessing Food Safety Implications of Multi-Antibiotic Resistant Fermented-Food-Condiment-Environment-Adapted Bacteria

Adenike A. O. Ogunshe1*

1Department of Microbiology, Faculty of Science, Applied Microbiology and Infectious Diseases, University of Ibadan, Ibadan, Oyo State, Nigeria.

Author’s contribution

The sole author designed, analysed, interpreted and prepared the manuscript.

Article Information

DOI: 10.9734/JAMB/2019/v15i230084

(1) Dr. Foluso O. Osunsanmi, Department of Biochemistry and Microbiology, University of Zululand, South Africa.

(1) Dr. Aly Farag El Sheikha, McMaster University, Canada.

(2) Guerrino Macori Teagasc, Ashtown Food Research Centre, Ireland.

Complete Peer review History: http://www.sdiarticle3.com/review-history/46727

ABSTRACT

Problem of Research: Food safety implications of fermented-condiment-adapted bacterial strains, regarding their intrinsic, acquired and transferable antibiotic resistance potentials are yet to be reported fully ascertained.

Aim: To determine food safety implications of culturalable fermented-condiment-adapted bacterial strains.

Methodology: Using the Kirby-Bauer agar disc-diffusion method, phenotypic multi-antibiotic-drug-in-discs resistance (MADIDR) profiles of 138 fermented-condiment-borne (Gram-positive = 71; Gram-negative = 67) bacterial strains from iru, ogiri and okpehe were evaluated by in-discs antibiotics, which are commonly administered in human and animal prophylaxis and therapy.

Results: None of the fermented-condiment-adapted bacterial strains was totally susceptible to the test in-discs antibiotics; just five (3.62%; n = 0.7%; Gram-positive = 2.9% Gram-negative) strains were mono-resistant, while six (4.37%) were totally or pandrug-resistant (PDR). Of the remaining 92.03% fermented-condiment-adapted-bacterial strains, 6.57% exhibited co-antibiotic drug resistance (CDR); 43.8% (Gram-positive = 17.52%; Gram-negative = 26.28%) were multi-drug resistant (MDR); and 41.55% (Gram-positive = 25.55%; Gram-negative = 16.0%) displayed extensive-drug resistance (XDR). A total of 43.48% Gram-positive and 36.96% Gram-negative

*Corresponding author: E-mail: adenikemicro@gmail.com, adenikemicro@yahoo.com;
bacterial strains were multi-resistant to between four and eight of the test *in-discs* antibiotics. Overall, augmentin (95.8%), cloxacillin (94.4%) cotrimoxazole (71.8%) and erythromycin (71.8%) were the most-resisted *in-discs* antibiotics by the condiment-adapted Gram-positive bacteria, while cloxacillin (93.8%), ciprofloxacin (80.0%) and augmentin (76.9%) were the most-resisted *in-discs* antibiotics by Gram-negative bacteria. **Conclusion:** Tremendous multi and extensive resistance to *in-discs* antibiotics were recorded among fermented-food-condiment-environment-adapted bacteria, indicating a serious food safety challenge in the ethnic cottage-food industries, food chain, and the community. Thus, preliminary screening for antibiotic resistance in food-condiment-borne bacteria, using *in-discs* antibiotics is strongly suggested.

Keywords: Consumer health protection; Fermented-Food-Condiment-Environment-Adapted-Bacteria (FFCEAB); foodborne pathogens and diseases; food safety; Ogiri ijebu.

1. INTRODUCTION

The cottage-produced Nigerian indigenous fermented food condiments (NIIFFCs) from leguminous seeds, prepared mostly by traditional fermentation methods, are a variety of popular strong-smelling food culinary products, with consistently appealing and unique organoleptic qualities, for enhancements of soups, sauces and other prepared dishes. By giving distinctively pleasant aroma, peculiar taste, flavour, and overall food delicacy characteristics to soups, sauces and prepared dishes, as well as their enhanced shelf-life, functionality, and nutritional properties, [1-3], the Nigerian indigenous fermented food condiments, such as, ogiri, iru / dawadawa / dadawa, okpehe, ugba, etc., are thereby, undeniably incomparable [1-9].

It is well known that indigenous fermented foods, and alcoholic / non-alcoholic beverages form part of the rich nutritional culture of most regions of the world. They symbolise the heritage and socio-cultural aspects of each ethnicity, beyond rural households and village communities. Apart from being strongly linked to culture, tradition, and indigenous community, even across countries; indigenous fermented foods and beverages represent an extremely valuable distinctiveness, in terms of food-culture and food-heritage [10-14]. Furthermore, ethnic foods have in-built systems, both as foods, to meet up with hunger, and also as medicine. So, traditional fermented foods are health-benefit-imparting staple foods for most of the developing countries, and also key healthy foods for developed countries. Production of antioxidants and antimicrobial compounds, and bio-availability of nutrients; stimulation of probiotic functions, and fortification with some health-promoting bioactive compounds, are part of the health benefits connections of fermented foods, and between human resident microbes and many aspects of physiology [15-23].

The overall sensory characteristics and health benefits of fermented foods are responsible for their massive consumption rates. However, with billions to feed worldwide, the need to produce adequate amounts of safe food, uncontaminated by bacterial, fungal, viral and protozoan pathogens, etc., remains one of the major challenges in modern times [24]. Meanwhile, most documented studies on the distinct Nigerian indigenous fermented food condiments have usually been on their processing, nutritional, physicochemical, acceptability, storage or shelf-life characteristics, and their fermenting microbial flora [3,25,26]; with only few studies actually reporting the effect of their microbial quality and food safety [27-30]. Moreover, the presence and potential ability of the fermenting microbes, which are likely to cause health problems, as a consequence of their survival, and consumption of their end products [31,32], call for adequate screening of such mostly uncontrolled, traditional fermented nutritional foods. The purpose of this study therefore, is to evaluate the antibiotic-indisc-multi--resistance (AIDMR) assay on easily-culturable bacterial flora isolated from market samples of three most popular Nigerian fermented food condiments, *iri, ogiri* and *okpehe*, as an easily-reproducible taxonomic tool for preliminary screening of antibiotic resistance in such indigenous foods.

2. MATERIALS AND METHODS

2.1 Traditional Preparations of the Fermented Food Condiments

Traditional preparations and fermentations of the test condiments in this study, ogiri ijebu, from
melon seeds (Citrilus lanatus); iru /dawadawa /daddawa, from African locust bean seeds (Parkia biglobosa) and okpehe / afiyo from mesquite (Prosopis africana), are as shown in Figs. 1-3.

2.2 Test Bacterial Flora

The test bacterial flora screened for their phenotypic antibiotic profiles included some of those earlier isolated from indigenous Nigerian fermented food condiments iru, ogiri and okpehe (Figs. 1-3), obtained from local markets in Ijebu Ode, Abeokuta, Ibadan, Lokoja, Gboko, Ondo, Akungba and Lagos in Nigeria [4,27-30].

2.3 Antibiotic Susceptibility / Resistance Determination (Discs)

In determining the antibiotic-in-disc-multi-resistance (AIDMR) of easily-culturable bacterial flora from three most popular Nigerian fermented
food condiments, *iru, ogiri* and *okpehe*, phenotypic antibiotic susceptibility and resistance of the Gram-positive and Gram-negative condiment-borne bacterial species to various antibiotics, was according to Bauer et al. [33] and NCCLS [34] agar disc-diffusion methods. Test antibiotics (discs) used for the Gram-positive bacteria screening were, tetracycline (TET; 30 µg), streptomycin (STR; 10 mg), augmentin (AUG; 30 µg), gentamicin (GEN; 10 µg), erythromycin (ERY; 5 µg), cloxacillin (CXC; 30 µg), chloramphenicol (CHL; 30 µg), cotrimoxazole (COT / CTX; 25 µg). Test antibiotics (discs) used for Gram-negative bacteria screening were, fortum (CAZ; 30 mg), ciprofloxacin (CPX; 10 µg), gentamicin (GEN; 10 µg), cloran (CTX; 30 µg), ofloxacillin (OFL; 30 µg), augmentin (AUG; 30 µg), nitrofurantoin (NIT; 250 µg) and cloxacillin (CXC; 30 µg).

The entire surface of each sterile Mueller-Hinton agar plate was seeded with each bacterial isolate, using sterile swab sticks. The plates were left for about 15 minutes before aseptically placing the multi-discs antibiotics on the agar surfaces with sterile forceps, followed by incubation at 32-35°C for 24-36 hours. Zones of inhibition were measured and recorded in millimetre diameter, while zones of inhibition less than 10.0 mm in diameter or absence of zones of inhibition were recorded as resistant (negative) [30].

3. RESULTS

Identified fermenting and associated bacterial flora of the sampled Nigerian fermented condiments in this study were reported as, *Micrococcus, Staphylococcus aureus, Streptococcus, E. coli, Enterobacter aerogenes, Klebsiella pneumoniae, Proteus mirabilis, Pseudomonas aeruginosa, Salmonella sp.* and *Shigella dysenteriae*, in addition to *Bacillus* species.

The narrow-spectrum or broad-spectrum test antibiotics (belonging to the aminoglycosides, macrolides, penicillins, tetracyclines, quinolones, etc.), are mostly bactericidal (bacterial death), and few bacteriostatic (growth inhibiting) towards the condiment-adapted bacterial strains. Results of the antibiotic susceptibility and resistance rates and profiles of condiment-adapted bacterial strains recorded in this study expressed that, with the exception of gentamicin (4.68%-26.7%), tremendously high antibiotic resistance rates of between ≥50.0% and 100% were exhibited by the Gram-positive bacteria. Generally, augmentin vs. cloxacillin antibiotics (discs) were the most-resistant antibiotics by the Gram-positive bacterial species [Bacillus / Micrococcus spp. 100% vs. 100%; *Staphylococcus aureus* 87.0% vs. 100%; *Streptococcus* 100% vs. 90.9%] (Table 1). But overall, antibiotics mostly resisted by ≥50.0% of the Gram-positive bacterial strains were erythromycin / cotrimoxazole (71.8%), chloramphenicol (66.2%), tetracycline (63.3%) and streptomycin (50.7%) (Fig. 4a).

The Gram-negative bacteria isolated from the indigenous fermented food condiments exhibited between 53.8% and 93.8% overall resistance rates, with the exception of ofloxacillin (4.6%) and gentamicin (20.0%) (Figure 4b) but higher resistance towards the two antibiotics were recorded for *Klebsiella* (ofloxacillin = 50.0%) and *Proteus* (gentamicin = 50.0%). More significant resistance rates were also exhibited by *Klebsiella, Proteus* and *Pseudomonas* species (Table 1). No resistance was exhibited by *Enterobacter* towards ofloxacillin but all the strains were resistant to augmentin and cloxacillin (100%), while 75.0% of *Enterobacter* strains exhibited resistance towards nitrofurantoin, cloran, ciprofloxacin and fortum (Table 2). All the *E. coli* strains were resistant to fortum, 93.3% and 80.0% of the *E. coli* strains were resistant to cloxacillin and augmentin respectively, while 66.7% of the strains were resistant to ciprofloxacin and cloran but the lowest resistance was recorded for ofloxacin (13.3%).

The two *Klebsiella pneumoniae* strains were totally resistant (100%) to augmentin, ciprofloxacin, cloran, fortum, ofloxacillin, nitrofurantoin and cloxacillin but no resistance was exhibited towards gentamicin. *Salmonella* strains exhibited highest antibiotic resistance rates towards cloxacillin (93.1%), fortum and ciprofloxacin (72.4%) but lowest resistance was recorded for gentamicin (20.7%), while no resistance (0.0%) was recorded for ofloxac. The most resisted antibiotics by *Shigella dysenteriae* were ciprofloxacin, cloxacillin (83.3%), fortum and augmentin (66.7%), while no resistance was exhibited against gentamicin (0.0%). Total resistance (100%) were also exhibited by *Proteus mirabilis* against fortum, ciprofloxacin, augmentin and cloxacillin; no resistance was recorded against ofloxacillin, while 50.0% resistance were recorded against gentamicin. *Pseudomonas aeruginosa* strains were all susceptible to ofloxacillin but total antibiotic resistance (100%) were recorded for
cloxacillin, augmentin, ciprofloxacin and fortum, while 71.4% and 85.7% antibiotic resistance were recorded for nitrofurantoin and claforan respectively. Lowest resistance of 14.3% was recorded for gentamicin.

The overall percentage multiple antibiotic resistance (%MAR) rates of 25.0%-100%, and respective %MAR for the condiment-borne bacteria were 25.0 - 75.0% (Salmonella), 25.0 - 87.5% (Bacillus, E. coli), 25.0 - 100% (Micrococcus), 37.5 - 100% (Staphylococcus), 50.0 - 87.5% (Streptococcus, Pseudomonas), 62.5 - 75.0% (Enterobacter, Proteus, Shigella), and 75.0% - 87.5% (Klebsiella). A total of 80.8% (n = 43.9) Gram-positive: n = 36.9% Gram-negative) of the condiment-borne bacterial strains displayed ≥50.0% MAR. More of the Gram-positive bacteria had 50.0-87.5%, while the Gram-negative bacteria had more 62.5-75.0% MAR (Table 2).

As shown in Table 3, most of the condiment-borne bacterial species were multi drug resistant (MDR) (Gram-positive = 17.52% Gram-negative = 26.28%) and extensively drug resistant (XDR) (Gram-positive = 25.5%) Gram-negative = 16.0%), while just 6.57% exhibited co-drug resistance (CDR). Only five (3.62%) strains of the condiment-borne bacterial strains (n = 0.7% Gram-positive: n = 2.9% Gram-negative) exhibited mono-resistance but six (Gram-positive = 4.37%) were totally (100%) resistant, i.e., pandrug-resistant (PDR).

4. DISCUSSION

As earlier suggested by Abriouel et al. [35], using all types of guidelines to perform risk assessments, there is need for closer investigations on antibiotics-in-food safety. So, in this study, narrow and broad-spectrum test antibiotics (belonging to the aminoglycosides, macrolides, penicillins, tetracyclines, quinolones, etc.), which are the classes of antibiotics commonly administered as prophylactic or /and therapeutic agents in human clinical cases, were incorporated into discs, ideally for agar disc-diffusion antibiotic susceptibility testing. Tremendous resistance to the test antibiotics, by both the fermenting and other associated bacterial flora of the ethnic fermented food condiments were also indicated in this study. In an earlier related study [30], which was the first report that ascertained massive multi-resistance by condiment-borne bacterial flora to commonly administered antibiotic medications in human and animal prophylaxis and therapy, significant multi resistance to 2-15 of 18 antibiotic drugs were recorded. Only 2.9% of the bacterial strains were totally susceptible to the 18 antibiotic medications, and even, the bacterial strains that were susceptible had more of minimal (narrow zones of inhibition) susceptibility values.
Table 1. Spatial distributions of percentage mono- and multi- antibiotic resistance rates among fermented-food-condiment-environment-adapted bacteria

<table>
<thead>
<tr>
<th>Bacterial spp.</th>
<th>Percentage antibiotic resistance rates</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0.0-14.9%</td>
</tr>
<tr>
<td>Gram positive spp.</td>
<td></td>
</tr>
<tr>
<td>Bacillus [12]</td>
<td>Gen (16.7%)</td>
</tr>
<tr>
<td>Micrococcus [13]</td>
<td>Gen (14.3%)</td>
</tr>
<tr>
<td>Staphylococcus [23]</td>
<td>Gen (21.7%)</td>
</tr>
<tr>
<td>Streptococcus [22]</td>
<td>Gen (4.68%)</td>
</tr>
<tr>
<td>Gram negative spp.</td>
<td></td>
</tr>
<tr>
<td>Enterobacter [4]</td>
<td>Off (0.0%)</td>
</tr>
<tr>
<td>E. coli [15]</td>
<td>Off (13.3%)</td>
</tr>
<tr>
<td>Klebsiella [2]</td>
<td>Gen (0.0%)</td>
</tr>
<tr>
<td>Salmonella [29]</td>
<td>Off (0.0%)</td>
</tr>
<tr>
<td>Shigella [6]</td>
<td>Gen (0.0%)</td>
</tr>
<tr>
<td>Proteus [4]</td>
<td>Off (0.0%)</td>
</tr>
<tr>
<td>Pseudomonas [7]</td>
<td>Off (0.0%)</td>
</tr>
</tbody>
</table>

Legends: Cot = cotrimoxazole; Chl = chloramphenicol; Cxc = Cloxacillin; Ery = erythromycin; Gen = Gentamicin; Aug = augmentin; Str = streptomycin; Tet = tetracycline. Caz = fortum; Cpx = Ciprofloxacin; Gen = gentamicin; Ctx = claforan; Off = ofloxacin; Aug = augmentin; Nit = nitrofurantoin; Cxc = cloxacillin.
In this current study, only 3.62% of the condiment-adapted bacterial strains were mono-resistant, while none of the bacterial strains was totally susceptible to the test in discs antibiotics. In spite of their special link to socio-cultural and nutritional profiles, consumers unknowingly and inadvertently ingest large viable populations of multi-antibiotic resistant bacteria along with the indigenous fermented food condiments. However, in addition, to the ability of foodborne bacteria to adapt and survive under various stressful environmental conditions in their ecological niches, during food-processing [36-40], food as means of vehicle can also considerably play significant role in facilitating infection, by protecting the food-borne pathogens from the effects of the stomach’s acidity [41,42]. According to Zwietering et al. [43], if a hazardous microorganism is found in a finished food product, it means something but, absence of microbes in a limited number of food samples is no guarantee of safety of a

Table 2. Overall percentage antibiotic resistance rates and patterns of fermented-food-condiment-environment-adapted bacterial flora

<table>
<thead>
<tr>
<th>Condiment-borne bacterial species</th>
<th>% Antibiotic resistance rates</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>12.5%</td>
</tr>
<tr>
<td>Gram-positive spp.</td>
<td></td>
</tr>
<tr>
<td>Bacillus [12]</td>
<td>3</td>
</tr>
<tr>
<td>Micrococcus [14]</td>
<td>-</td>
</tr>
<tr>
<td>Staphylococcus [23]</td>
<td>-</td>
</tr>
<tr>
<td>Streptococcus [22]</td>
<td>1</td>
</tr>
<tr>
<td>Total [71]</td>
<td>1</td>
</tr>
<tr>
<td>% Total</td>
<td>0.72%</td>
</tr>
<tr>
<td>Gram-negative spp.</td>
<td></td>
</tr>
<tr>
<td>Enterobacter [4]</td>
<td>-</td>
</tr>
<tr>
<td>E. coli [15]</td>
<td>-</td>
</tr>
<tr>
<td>Klebsiella [2]</td>
<td>-</td>
</tr>
<tr>
<td>Salmonella [29]</td>
<td>2</td>
</tr>
<tr>
<td>Shigella [6]</td>
<td>2</td>
</tr>
<tr>
<td>Proteus [4]</td>
<td>-</td>
</tr>
<tr>
<td>Pseudomonas [7]</td>
<td>-</td>
</tr>
<tr>
<td>Total [67]</td>
<td>4</td>
</tr>
<tr>
<td>% Total</td>
<td>2.9%</td>
</tr>
</tbody>
</table>

Legend: * = mono-resistance

Table 3. Percentage antibiotic resistance profiles of fermented-food-condiment-environment-adapted bacterial flora

<table>
<thead>
<tr>
<th>Condiment-borne bacterial species</th>
<th>% Multiple antibiotic resistance profiles</th>
<th>Total ARP</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>CDR (25.0%)</td>
<td>MDR (37.5-62.5%)</td>
</tr>
<tr>
<td>Gram-positive spp.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bacillus [12]</td>
<td>3</td>
<td>6</td>
</tr>
<tr>
<td>Micrococcus [14]</td>
<td>1</td>
<td>6</td>
</tr>
<tr>
<td>Staphylococcus [23]</td>
<td>-</td>
<td>8</td>
</tr>
<tr>
<td>Streptococcus [22]</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>Total [71]</td>
<td>5</td>
<td>24</td>
</tr>
<tr>
<td>% Total</td>
<td>3.65%</td>
<td>17.52%</td>
</tr>
<tr>
<td>Gram-negative spp.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Enterobacter [4]</td>
<td>-</td>
<td>3</td>
</tr>
<tr>
<td>E. coli [15]</td>
<td>2</td>
<td>10</td>
</tr>
<tr>
<td>Klebsiella [2]</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Salmonella [29]</td>
<td>2</td>
<td>17</td>
</tr>
<tr>
<td>Shigella [6]</td>
<td>-</td>
<td>2</td>
</tr>
<tr>
<td>Proteus [4]</td>
<td>-</td>
<td>1</td>
</tr>
<tr>
<td>Pseudomonas [7]</td>
<td>-</td>
<td>3</td>
</tr>
<tr>
<td>Total [66]</td>
<td>4</td>
<td>36</td>
</tr>
<tr>
<td>% Total</td>
<td>2.92%</td>
<td>26.28%</td>
</tr>
<tr>
<td>Overall % Total</td>
<td>6.57%</td>
<td>43.80%</td>
</tr>
</tbody>
</table>

Legends: CDR = co-drug resistance; MDR = multi drug resistance XDR = extensive drug resistance; PDR = pan drug resistance
whole production batch. So, contrary to the findings of Salminen et al. [44], antibiotic resistance in fermenting and associated condiment-borne bacterial strains cannot be beneficial in these regards.

Preservation and safeguarding of food are still the major objectives of food fermentation [45], which is typically carried out by the performance of each single microbial strain or mixed cultures that consist of multiple microbial species or strains, in isolation, and in synergy or antagonism with other strains, as the microbial consortia ultimately determine the final fermented food products, especially from cottage and industrial fermentation perspectives. But nowadays, terms such as, extensive drug resistance (XDR), and pan drug resistance (PDR) are commonly used to exhibit the depth of bacterial resistance [46]. Co-resistance refers to the presence of resistance to more than one class of antibiotics in the same bacterial strain. MDR was defined as acquired resistance to at least one antibiotic in three or more antibiotic classes, XDR was defined as resistance to at least one antibiotic in all but two or fewer antimicrobial classes (i.e., bacterial isolates is susceptible to only one or two classes of antibiotics), while PDR was defined as resistance to all antibiotics in all antibiotic classes [46, 47]. Therefore, in the era of tremendous increase in multidrug-resistant, extensively drug-resistant and even pandrug-resistant bacteria, the medical community is facing the threat of untreatable infections [47,48].

Dietary habits have been found to affect the composition of human faeces, and even linked to colon cancers through faecal water genotoxicity [49], since evidence suggested that intestinal microbiota highly contributes to its balance, by induction of chronic inflammation, due to bacterial infections and/or production of toxic bacterial metabolites [50-54]. Also, bacteria can be transferred from food to the GIT microbiota, while antimicrobial resistance gene transfer can then occur between the GIT microbiota, within the favourable conditions of the GIT [55]. Transfer of antimicrobial resistance genes between bacteria, after ingestion by humans may occur as well, and under minimal food processing or preservation treatment conditions, when sublethally damaged or stressed cells can be maintained in the food; thereby, inducing antimicrobial resistance build-up, which can enhance the risk of antimicrobial resistance transfer [56].

Food safety and quality depend on many specific factors, including favourable or harmful microbial properties [57], one of which is, foodborne microbial flora that harbour antimicrobials and transferable antimicrobial resistance genes, which can be involved in antimicrobial residues in foods. As highly important and popular as ethnic fermented food condiments are world-wide, available data highlighted some notable exceptions where they have been associated with bacterial pathogens implicated in outbreaks of foodborne illnesses [27,32,58], most likely due to contaminations during processing. It then means, in spite of quality, safety and acceptability of the traditional fermented food condiments being tremendously improved, by the use of starter cultures [59, 60], which are selected on the basis of multifunctional considerations [45], as well as, being natural food products that appeal to the consumers, who often doubt the safety of synthetic chemical food additives [5]: the presence of multi-antibiotic resistance makes dependence of traditionally fermented food condiments on inoculation from previous fermented batch, as starter cultures, source of enhancement and transference of antibiotic resistance virulence, and growth-detrimental interactions, on the fermenting bacterial species [61]. Antibiotic resistance genes are then vertically passed to the next generation of microbes; while in some cases, they are acquired through horizontal transfer from one microbe to another, when thriving in the same microbial environment [62,63].

Microbes used as probiotics are not exempted from acquiring antibiotic resistance genes [64-67], as they represent a huge reservoir of antimicrobial resistance genes in traditional fermented food products, especially in developing countries. These situations have therefore, prompted food safety concerns in the food industries, leading to regulatory interventions in some cases. As the world is running out of antibiotics [68], due to fewer, or even sometimes, no effective antimicrobial agents available for infections caused by these bacteria [43], as well as emergence of resistance to multiple antibiotics in pathogenic bacteria becoming a significant public health threat. This study also clearly demonstrates that the fermenting and associated bacterial flora in easily contaminated samples of three indigenous Nigerian cottage-produced fermented condiments, iru, ogiri and okpehe (afiyo) have successfully adapted to antibacterial resistance properties. Based on the findings of this study, it
is strongly suggested that \textit{in-discs} antibiotics assay be used, for preliminary determination of antibiotic-resistance profiles of condiment-adapted-bacterial species, including those, which can be selected as starter and probiotic cultures.

5. CONCLUSION

Screening of the finished products of Nigerian indigenous fermented food condiments by antibiotic-resistance testing, as a control measure, provided information, not only on the lack of bacterial safety status of the ethnic fermented vegetable food condiments, but also on the tremendous resistance of the condiment-adapted bacteria to antibiotics (commonly administered in human prophylaxis and therapy). This easy-to-adapt antibiotic-resistance screening method employed in the current study for food-condiment-adapted bacteria, can certainly serve as a fermented-food microbiological risk and safety assessment tool.

ACKNOWLEDGEMENTS

The author acknowledges Kehinde Olasugba, Zibi Johnny, Celestina Obieke, and late Roy Adeyemi, for laboratory assistance. Dr. O. A. Falode is also acknowledged for publication support.

COMPETING INTERESTS

Author has declared that no competing interests exist.

REFERENCES

34. NCCLS. National Committee for Clinical Laboratory Standards Performance standards for antimicrobial disk susceptibility tests. 8th Ed. 2003;23:37-50.

60. Ugwuanyi JO. Microbial technology and food security: Microorganisms put safe food on our tables. 106th Inaugural Lecture of the University of Nigeria Nsukka, Nigeria. 2016;1-74.

© 2019 Ogunshe; This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Peer-review history:
The peer review history for this paper can be accessed here:
http://www.sdiarticle3.com/review-history/46727